Proton release during the four steps of photosynthetic water oxidation: induction of 1:1:1:1 pattern due to lack of chlorophyll a/b binding proteins.
نویسندگان
چکیده
In photosynthesis of green plants water is oxidized to dioxygen. This four-step process is accompanied by the release of four protons (per molecule of dioxygen) into the lumen of thylakoids. In dark-adapted thylakoids which are excited with a series of short flashes of light, the extent of proton release oscillates with period four as a function of flash number. Noninteger and pH-dependent proton/electron ratios (e.g., 1.1, 0.25, 1.0, and 1.65 at pH 7) have been attributed to a superposition of two reactions: chemical production of protons and transient electrostatic response of peripheral amino acid side chains. Aiming at the true pattern of proton production, we investigated the relative contribution of peripheral proteins. Thylakoids with and without chlorophyll a/b binding proteins were compared. Thylakoids lacking chlorophyll a/b binding proteins were prepared from pea seedlings grown under intermittent light [Jahns, P., & Junge, W. (1992) Biochemistry (preceding paper in this issue)]. We found no oscillation of proton release in the pH range from 6 to 7.5. These and other results showed that chlorophyll a/b binding proteins, which primarily serve as light-harvesting antennas, modulate proton release by water oxidation. A nonoscillating pattern of proton release, with proton/electron ratios of 1:1:1:1 more closely represents the events in the catalytic center proper. This implies hydrogen abstraction rather than electron abstraction from water during the oxygen-evolving step S3----S0.
منابع مشابه
Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations.
In oxygenic photosynthesis, solar energy drives the oxidation of water catalyzed by a Mn(4)Ca complex bound to the proteins of Photosystem II. Four protons are released during one turnover of the water oxidation cycle (S-state cycle), implying thermodynamic limitations at low pH. For proton concentrations ranging from 1 nm (pH 9) to 1 mm (pH 3), we have characterized the low-pH limitations usin...
متن کاملOn the reduction of chlorophyll-A1 in the presence of the plastoquinone antagonist dibromothymoquinone.
In a preceding paper [ 1 ] we presented experimental results, which led to the identification of four protolytic reaction sites in the functional membrane of photosynthesis: two sites of proton uptake at the outer side of the membrane, in agreement with prior studies [2] , and two sites of proton release into the inner phase. One of these sites had to be attributed to the reduction of the termi...
متن کاملMolecular study of 20-line advanced proteins of durum wheat under water stress
In order to investigate different lines of durum wheat for water stress tolerance, an experiment in the greenhouse was implemented, using 20 lines of durum wheat at two levels of water stress (40% and 70% of the amount of available water was completely drained in 0.4 and 0.7 levels of stress, respectyively and re-irrigation was performed) and a control level (complete irrigation) in the form of...
متن کاملElectrostatics and proton transfer in photosynthetic water oxidation.
Photosystem II (PSII) oxidizes two water molecules to yield dioxygen plus four protons. Dioxygen is released during the last out of four sequential oxidation steps of the catalytic centre (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), S(3) --> S(4) --> S(0)). The release of the chemically produced protons is blurred by transient, highly variable and electrostatically triggered proton transfer at...
متن کاملThe Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI.
The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 31 32 شماره
صفحات -
تاریخ انتشار 1992